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Abstract: Di-m-butyl methylenemelonate combines efficiently with simple enol ethers at -7B’C 

in the presence of zinc bromide to give [2+23 cycloadducts. 

Recently we reported a convenient synthesie of di-e-butyl methylenemalonate (DBMM, 

1),2 which is considerably more stable than simpler congenere and suitable for synthetic 

exploration. Because of the potential for activation of 1 via metal ion chelation, initial 

experiments have focused on its behavior as an acceptor in Lewis acid mediated Michael 

reactions. Aa developed by Mukaiyama, the latter conventionally includes an aqueous workup 

and isolation of the classical Michael adduct. In some variations, however, products of eilyl 

transfer4 and formal [2+2]6 and [4+215~,6 cycloaddition have been isolated. We record here 

that DBMM, in zinc bromide7 mediated reactions with simple enol ethers at low temperature, 

characteristically gives rise to cyclobutanee in good to excellent yielde. 

1 

When excess B-butyl vinyl ether (2a, Table 1) wae added to a 1:l mixture of DBMM and 

zinc bromide in dichloromethane at -78-C and the reaction quenched with water after 0.5h, 

cycloadduct 8a was obtained in gwd yield.8*9 Especially diagnostic in identifying 2a aa a 

cyclobutane and eliminating other possibilities were saturated eater carbonyl absorption at 

1724 cm-l, the lack of C=C absorption near 1650 cm-l , proton NMR absorption characteristic of 

a eeturated monoether, and 13C NMR absorption consistent with a saturated four-membered 

ring carbon framework.1° Under the same conditions, dihydropyran (2b) cleanly afforded 3b 

in comparable yield. 

In contrast to these results, when ketone-derived substrates 2c and 28 were subjected to 
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T_a.b!e_J. Cyclobutanes from DBMM and Errol Ethers _.-.-- 
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the same protocol, Michael adducts 4 and Ba were isolated in 60 and 76% yields, respectively. 

Closer scrutiny of these reactions revealed, however, that local heating effects and stringency 

of workup conditions were very likely responsible for this divergence in behavior. When 

reactants were firat combined at -130-C, warmed to -78’C, and the reaction then worked up 

by quenching with pyridine at -78*C,ll cycloadducts 3c and 3e were obtained very cleanly. 

This procedure was then used to prepare the remaining adducts in Table 1.18 

,+CO+Bu )&CO&Bu 

The foregoing reactions are remarkably efficient, the cycloadducts being the only 

detectable product except for 3c which was accompanied by -4% of 4. The stability of the 

hO+Bu 

4 5a, n=4 
5b, n=6 

small ring P-alkoxymalonate moiety varied considerably with structure, a feature which was 

revealed especially in the fragility of 3c and 3g. Each of the latter has thus far defied 

purification because of rapid breakdown on silica gel and neutral alumina and, in the case of 

3gr rapid decomposition upon attempted distillation.13 Characterization was effected 

spectroscopically and through acid catalyzed hydrolysis to ketomalonates 4 and 5b. 

The foregoing results reveal the potency of zinc complexed 1 as an electrophile and the 
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propensity of presumed intermediate 6 to undergo 1,4-closure. Evidently complexation 

forecloses a nucleophilic role for carbonyl oxygen and directs reaction eeaentially completely 

towards carbon-carbon bond formation. 14 Thie behavior contrasts with the obeervation that 

enecarbonyl systems o-substituted with carbonyl or other electron withdrawing n-functionality 

generally combine directly with electron rich alkenes via inverse electron demand Diels-Alder 

cycloaddition to give dihydropyrane. 6ap15 Further elaboration of this chemistry ae a new 

variation of thermal [2+21 cycloaddition as well as development of the aforementioned adducts 

a8 masked aldehydo- or ketomalonatee are in progress. 

6 (R = t-611) 
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